Distributionally robust $$L_1$$-estimation in multiple linear regression
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملDistributionally Robust Logistic Regression
This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown datagenerating distribution with high confidence. We then formulat...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملDistributionally robust chance-constrained linear programs
In this paper, we discuss linear programs in which the data that specify the constraints are subject to random uncertainty. A usual approach in this setting is to enforce the constraints up to a given level of probability. We show that for a wide class of probability distributions (i.e. radial distributions) on the data, the probability constraints can be explicitly converted into convex second...
متن کاملSome Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Letters
سال: 2018
ISSN: 1862-4472,1862-4480
DOI: 10.1007/s11590-018-1299-x